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The functional MRI (fMRI) community has zealously
embraced resting state or intrinsic functional connectiv-
ity approaches to mapping brain organization. Having
demonstrated their utility for charting the large-scale
functional architecture of the brain, the field is now
leveraging task-independent methods for the investiga-
tion of phenotypic variation and the identification of
biomarkers for clinical conditions. Enthusiasm aside,
questions regarding the significance and validity of in-
trinsic brain phenomena remain. Here, we discuss these
challenges and outline current developments that, in
moving the field toward discovery science, permit a shift
from cartography toward a mechanistic understanding
of the neural bases of variation in cognition, emotion and
behavior.

Characterizing phenotypic variation
Nearly two decades after the seminal description of the
phenomenon [1], resting state or intrinsic functional con-
nectivity (iFC; Box 1) research is booming. Having amply
demonstrated the utility of iFC approaches for mapping the
functional architecture of the brain [2,3], researchers are
now beginning to tackle cognitive and clinical neuroscience
questions concerning the neural bases of interindividual
phenotypic variation (i.e., brain-behavior relationships).
Using task-based approaches, researchers are typically re-
stricted to the examination of specific cognitive constructs
and tasks adapted for the scanner environment. In contrast,
using task-independent approaches, researchers can exam-
ine the relationships between brain activity and any pheno-
typic variable quantified inside or outside the scanner (e.g.,
psychiatric diagnoses; cognitive, behavioral or physical
states or traits; task performance), using a single imaging
dataset. The possibilities are exhilarating – studies have
already examined the neural correlates of variation along
several spectra of behavior, including memory function [4],
social competence [5], personality [6], and social network
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size and rank inmacaquemonkeys [7]. Enthusiasmmust be
tempered, however, by concerns regarding sample size,
motion and other nuisance factors, as well as a lack of
consensus regarding data processing strategies. Most im-
portant, the neurophysiological bases of intrinsic brain
activity and iFC remainpoorlyunderstood.Here,wediscuss
these challenges and outline how propagation of the meth-
ods and ethos of discovery science can help to address them.

The unconstrained nature of rest
A persistent criticism of resting state fMRI (R-fMRI) is the
unconstrained, unknowable and variable nature of rest
itself. In particular, concern is often expressed that inter-
individual or group differences in ‘resting’ cognition could
be largely responsible for the results obtained. Unease
regarding the influence of active cognition during rest
primarily reflects a conflation of the intrinsic activity that
underlies iFC and the relative increases in activity that
occur in the default network during passive or resting state
conditions. Specifically, whereas the relative increase in
default network activity during passive conditions is in-
deed likely to reflect active cognition [8,9], intrinsic activity
persists across, albeit moderated by, multiple states, in-
cluding rest, task performance, sedation and sleep, and is
also observed across species. As such, intrinsic activity
represents a distinct phenomenon, likely with distinct
neurophysiological bases, that does not support active
cognitive processing [9].

The effect of participant current state cannot be dis-
regarded entirely, however. Manipulations of participants’
resting cognitions [10] or mood [11] impact iFC significant-
ly. Further, intrinsic activity is affected by whether parti-
cipants are instructed to maintain their eyes open or closed
[12,13], the prior performance of cognitive tasks [14] and
factors such as substance withdrawal [15], drowsiness and
sleep [16,17]. Perceptual processing may also have an
impact [18]. Concern about such factors has largely been
controverted by themoderate-to-high test-retest reliability
demonstrated for indices of intrinsic activity [19] and iFC
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Box 1. Same phenomena, many names

Although long a condition of interest for researchers working with a

variety of modalities including electroencephalography (EEG) and

positron emission tomography (PET), the work of Biswal and colleagues

[1] marked the birth of the field of study of rest using fMRI (see [89] for an

eloquent historical account). Whereas certainly an appropriate designa-

tion during the early years of the field, the term ‘resting state’ now

seems somewhat of a misnomer. That is, in light of evidence for the

ubiquitous and universal nature of the correlated fluctuations of

interest, the term ‘resting state’ no longer accurately captures the

phenomenon in question, motivating a search for alternatives.

Extant designations vary according to whether they capture the

imaging method (e.g., R-fMRI), analytic approach (e.g., resting state

functional connectivity) or the biological phenomenon itself, and it is

difficult to identify a label that encompasses all aspects. Here, our

preference is to refer to the biological phenomenon, without bias

toward a specific imaging modality or analytic approach. Accordingly,

while we recognize the historical significance of ‘resting state,’ we use

the term ‘intrinsic activity,’ defined by Raichle [90] as ‘‘ongoing neural

and metabolic activity which is not directly associated with subjects’

performance of a task’’. We also employ the corollaries ‘intrinsic

functional connectivity’ (iFC) and ‘intrinsic connectivity networks’

(ICNs) to refer to the quantification of coherent intrinsic activity and

the functional networks in which it occurs, respectively. Finally, we

use the term ‘functional connectome’ [24] to refer to the complete set

of intrinsic functional connections in the brain.

It is our hope that, as the field moves toward a better understanding

of the neuroanatomical and neurophysiological bases of intrinsic

activity, a more specific nomenclature will emerge. Currently,

however, we suggest that ‘intrinsic’ is preferable to ‘resting state’

for a number of reasons: (i) it captures something about the biological

phenomenon itself, which is not specific to a particular modality such

as fMRI; (ii) it depicts the ubiquity of the phenomenon – the

persistence of intrinsic activity across sleep, sedation, task perfor-

mance and coma, as well as its presence across multiple mammalian

species; (iii) it does not limit the phenomenon described in terms of

periodicity or frequency; (iv) it has already been adopted by several

researchers (e.g., [57,90]); and finally, (v) as the field experiments with

different states (e.g., scanning during sleep or while participants

watch a video or listen to music), shedding the ‘resting state’ moniker

will become more important.
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[12,20–23]. Even substantial variation associated with
data collection site or scanner does not obscure iFC mea-
sures [24]. Consequently, if factors related to participant
state vary randomly across a sample, their effects are likely
to be negligible, but if systematic variation is suspected, for
instance, between groups, concern is justified and inter-
pretations should be tempered accordingly. One response
to this challenge is comprehensive phenotypic characteri-
zation. This will allow investigators to control for state and
trait differences among participants or to interrogate the
neural correlates of these differences themselves, by per-
mitting the investigation of brain-behavior relationships
for both categorical (e.g., group) and continuous measures
of phenotypic variation in the context of group-level anal-
yses [25,26]. Finally, an alternative approach involves
avoiding ‘rest’ by exerting experimental control over par-
ticipants’ state, for example, by scanning during natural
sleep or passive conditions (listening to music or watching
a movie) (e.g., [27]). Investigating the impact of such
manipulations is an important next step.

Physiological noise and the global signal
The primary criticism leveled atBiswal et al. [1] – the extent
to which R-fMRI phenomena can be explained by physiolog-
ical processes such as vasomotion, rather than spontaneous
neuronal activity – remains a concern. Signals associated
with cardiac and respiratory processes account for 5-15% of
the variance in intrinsic blood oxygenation level dependent
(BOLD) activity [28–31]. Interindividual or group differ-
ences in factors affecting neurovascular coupling (e.g., age
or disease processes) may therefore be particularly worri-
some [32,33]. The study of very young [34] and elderly [35]
populations should be accompanied by an awareness of
these factors, as should studies of a variety of pathologic
conditions including obesity [36], Alzheimer’s Disease [37]
and stroke [38].

Ideally, physiological signals should be recorded and
removed from R-fMRI data [28,39–41]. However, many
researchers lack the necessary recording equipment or
experience procedural difficulties (e.g., respiratory belt
calibration). Although independent component analysis
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(ICA) approaches can remove physiological signals in the
absence of explicit recordings [42,43], the predominant
approach is nuisance signal regression. This entails the
removal, via regression, of signals associated with motion,
white matter and cerebrospinal fluid, as well as a global
(mean) signal. Global signal regression (GSR) has been
criticized for mathematically shifting the distribution of
correlations so that approximately half are negative [44].
The neurophysiological validity of the resulting negative
correlations (‘anticorrelations’) has not yet been estab-
lished. On the other hand, omitting GSR from analyses
reduces sensitivity and anatomical specificity, prompting
its continued use, despite the associated caveats.

Alternatives to GSR have been proposed [45,46], which,
although promising, do not resolve the question of what it
means when two regions that were positively correlated or
unrelated before correction become negatively correlated
afterwards. More problematic is the temptation to over-
interpret negative correlations – as ‘inhibitory’ interac-
tions, for example (e.g., [47]). Further, electrophysiological
work suggests that the global signal is correlated with an
oscillatory neuronal signal present throughout the brain
[48]. Although this observation does not necessarily inval-
idate the use of GSR, it prompts caution in discussing
‘negative’ iFC and emphasizes the need for direct exami-
nation of the neurophysiological bases of intrinsic activity
and the global signal in animal models [49].

Head motion: a recurring issue
The association between age and iFC constitutes one of the
most commonly studied phenotypic relationships to date.
Recent evidence that previously reported developmental
changes in iFC may, in part, reflect the effects of motion
[50,51] is thus particularly troubling. The confounding
effects of motion are not restricted to developmental stud-
ies but are a concern for all iFC studies, and indeed fMRI
studies in general [50–52]. The solution remains unclear.
Power et al. [50] propose that offending time points be
removed prior to computing iFC. However, this is a de-
structive procedure that may violate analytic assumptions
(e.g., temporal contiguity). Further, how and when to
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Figure 1. Effect of sample size on the group-level correlation between age and

posterior cingulate cortex (PCC) iFC (adapted from [24]). The correlation between

age and PCC iFC was computed for each of a set of randomly sampled subgroups,

ranging in size from 10 to 1,090. The plot shows the mean correlation � 2 times the

standard deviation (SD), computed across 10,000 iterations. The plot demonstrates

that sample sizes less than 100 produce wildly varying estimates of the ‘true’ effect

(the observed correlation between iFC and age, computed on the basis of 1093

participants and indicated by the solid horizontal line).
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excise motion-corrupted frames is open to question [53], as
are the limits of this approach: what proportion of frames
can or should be removed? Van Dijk et al. [52] propose a
less aggressive approach that involves including the mean
frame-wise motion or number of micromovements as a
nuisance covariate in group-level analyses. How to best
quantify the success of such correction strategies and when
to exclude participants outright remain open questions.

Structural variation
Volumetric and morphometric differences among partici-
pants, together with variation in the accuracy of template
normalization, may also confound investigations of pheno-
typic differences in the functional connectome. Strategies
to deal with these factors have been described, such as the
inclusion of mean or voxel-wise covariates quantifying
normalization accuracy [54] or morphometric measures
[55], or the use of iFC maps themselves as a basis for
inter-subject alignment [56]. Surface-based analyses
[3,57,58] offer a particularly promising avenue. Yet, even
in meticulously executed surface-based analyses, ambigu-
ities remain, such as the commonly observed iFC between
superior temporal areas and ventral somatomotor cortex,
which may reflect true anatomic connectivity or blurring of
signal across the Sylvian fissure [3]. In addition, interindi-
vidual variation in the locations of functional boundaries
may not be resolved by alignment of gross anatomical
features. High-resolution datasets and work in animal
models may permit the disambiguation of these possibili-
ties.

The case for discovery
Poldrack [59] has emphatically outlined the need for larger
sample sizes, appropriate correction for multiple compar-
isons and robust statistical methods across the fMRI field
as a whole. Simply put, inadequate sample sizes, methods
and correction procedures induce a vicious cycle in which
under-powered or methodologically weak studies are used
in attempts to replicate the results of other weak studies,
producing a large number of failures to replicate and a
surfeit of false positives.
Box 2. Multivariate prediction analysis

When applied to the study of intrinsic activity, the goal of discovery

science is to identify models that relate measures of that activity (such

as iFC) to phenotypic variables. Prediction analysis provides a means

for measuring how well these models generalize to independent data.

This is complementary to inferential statistics, which measure the

likelihood of such relationships arising by chance. In the prediction

analysis framework, a model relating iFC to a phenotype is learned

from a training dataset. This model is then applied to an independent

test dataset to predict phenotypes. The resulting predictions are

compared to the true phenotypes to estimate how well the model

generalizes to the test dataset. Thus, prediction analysis provides a

natural framework for evaluating biomarkers [96], performing real-

time fMRI [91] and evaluating experimental trade-offs [92].

Prediction analysis has been applied to functional neuroimaging

data since the early 1990s [93] and more recently to IFC data [94].

Most, if not all, analysis methods can be applied in a predictive

modeling framework but the majority of methods that have been

applied to iFC are multivariate classification and regression methods

(referred to as multivariate prediction analysis – MVPA). Multivariate

methods are more sensitive to distributed patterns of iFC than their
Figure 1 illustrates why these challenges are particular-
ly salient for the examination of interindividual variation in
the functional connectome. The plot shows the effect of
sample size on a group-level correlation between age and
iFC, revealing that sample sizes less than 100 produce
wildly varying estimates of the ‘true’ effect (i.e., the effect
obtained across all 1093 participants). Even though con-
cerns can bemitigated by combining estimates of iFC across
multiple scans [5] or by demonstrating reliability across
scans or samples [6,55,60], this finding is sobering for stud-
ies of brain-behavior relationships using R-fMRI data,
which, to date, have employed relatively small samples.

Going forward, these challenges may best be addressed
byadopting the tools of discoveryscienceandaccruing large-
scale, well-characterized datasets that permit the creation
of test and replication samples (e.g., [3,57]). Several projects
are already moving in that direction, including the 1000
univariate counterparts. Additionally, they provide a means for

evaluating the significance of an entire pattern using a single statistic,

obviating the need to correct for multiple comparisons.

Although there are many circumstances in which high prediction

accuracy is the ultimate goal of an analysis (e.g., predicting treatment

outcome), in general, it is desirable that the model also be

interpretable. Identifying the iFC measures (features) that are most

important to the model is problematic and an open issue for MVPA

research. Several feature selection algorithms have been proposed to

address this issue, but there is no consensus on which is best [96]. We

note that feature selection methods that rely on feature-by-feature

statistical tests require correction for multiple comparisons.

MVPA classification has already been successfully used to identify

potential iFC biomarkers of Alzheimer’s disease [95], major depres-

sion [96], schizophrenia [97], and autism [47], among others. MVPA

classification and regression techniques have also been applied to

identify biomarkers of age [98] and recent work has shown the utility

of MVPA methods for deriving iFC models at the individual level [99].

An in-depth overview of the statistical pattern recognition methods

underlying MVPA techniques can be found in [100].
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Box 3. Clinical insights and applications

Long frustrated by the challenges of designing task-probes amenable

to clinical populations that differ in terms of intellectual, cognitive or

behavioral functioning, researchers have readily welcomed task-

independent approaches (see Table 1 for a list of disorders and

conditions studied to date). In addition to overcoming concerns

regarding practice, floor and ceiling effects, iFC approaches have

made hopes of data aggregation across imaging sites a reality. This is

especially important for the study of clinical populations, many of

which have a prevalence of 1% or lower in the general population,

necessitating the aggregation of resources across sites to achieve

appropriate sample sizes.

The transformative impact of the iFC approach for the fields

of neurology and psychiatry extends beyond logistical considera-

tions, fostering a shift in how we conceptualize neuropsychiatric

illness. Whereas task-based studies encouraged a search for a

‘clinical homunculus’ that mapped distinct clinical phenomenology

to altered function in circumscribed regions of the brain, the iFC

approach emphasizes compromised functional interactions as

potential loci of dysfunction. Ultimately, the comprehensive assess-

ment of both regional function and interregional connectivity are

needed to provide the most complete characterization of the impact

of pathological processes on the brain.

With respect to the future of clinical applications, the recent

ADHD-200 Global Competition (http://fcon_1000.projects.nitrc.org/

indi/adhd200/results.html) brought a key question to the forefront:

do iFC approaches, and neuroimaging more broadly, have a role in

the diagnosis of psychiatric illness? To answer this question, we

look to models from the broader medical community. For example,

when a patient visits their doctor with symptoms suggestive of a

common cold, no blood test or diagnostics are ordered. In contrast,

when the presenting symptoms are consistent with multiple

possibly severe diagnoses, objective laboratory tests become of

value. Applied to psychiatric illness, for a typical presentation of a

condition such as Attention-Deficit/Hyperactivity Disorder (ADHD),

the criteria in current diagnostic manuals are sufficient. However,

when a clinical presentation cuts across diagnostic boundaries

and clarification can directly impact treatment decision-making,

imaging-based tools may have value in improving diagnostic

accuracy. Similarly, imaging-based tools may help track response

to treatment. However, as highlighted by the ADHD-200 Global

Competition, claims of clinical utility for purely imaging-based

approaches in psychiatry are currently premature and potentially

harmful. Further methodological innovation, combined with

the generation of carefully characterized and well-coordinated

datasets, is needed before imaging-based diagnostic tools can

become a reality.

Table 1. Number of publications in which iFC or resting state
approaches have been used to study a variety of disorders
and conditions (PubMed search on 25 January 2012)

Disorder/Condition # studies

Schizophrenia 45

Alzheimer’s Disease 44

Depression 42

Mild Cognitive Impairment (MCI) 33

Aging 39

Epilepsy 29

Substance Dependence 28

ADHD 16

Multiple Sclerosis 13

Autism 12

Parkinson’s Disease 11

Pain 10

Anxiety Disorders 8

Sleep 2

Miscellaneous Neurological Disorders 10

Stroke 7

Obsessive Compulsive Disorder (OCD) 8

Posttraumatic Stress Disorder (PTSD) 8

Amnesia 4

Brain Lesions 7

Dementia 2

Seizure 3

Trauma 4

Bipolar Disorder 3

Personality Disorders 2

Cerebral Palsy 2

Fetal Alcohol Syndrome 2

Migraine 2

Psychopathy 2

Learning Disabilities 1

Tourette Syndrome 1
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Functional Connectomes Project (FCP) and International
Neuroimaging Data-sharing Initiative (INDI; http://
fcon_1000.projects.nitrc.org), the HumanConnectome Proj-
ect (HCP; http://www.humanconnectome. org), and the
Superstruct project (http://sfari.org/funding/grants/
abstracts/the-brain-genomics-superstruct-project). Data
from FCP/INDI are already freely available to the commu-
nity, while both the HCP and Superstruct projects will be
making data available in the near future. The scientific
multiplier effect of such efforts is already evident, with at
least 24 papers published using FCP resources within two
years of making these resources available. Propagation of
the ethos of discovery science to thefield as awhole is crucial
to further progress in identifying the neural correlates of
individual differences.

Analytic tools for discovery
Together with ICA approaches, seed-based correlation
remains a popular method for deriving iFC because of
its computational simplicity and amenability to group-
level comparisons. Temporal- [61,62] and frequency
184
domain-based [63–65] measures for characterizing intrin-
sic activity are also gaining popularity. More sophisticated
methods are rapidly proliferating (see [66] for a review) as
researchers adapt analyses and algorithms from other
fields and computational infrastructures grow to match
their demands. Some approaches, such as those aimed at
detecting causal influences among regions, have been
found wanting [67], although newer methods for the inves-
tigation of directional influences may be more effective
[68]. A particularly promising line of research is the inves-
tigation of dynamic changes in iFC [69], a characteristic
that may explain some of the phenotypic variation in iFC
observed to date (e.g., ‘hyperconnectivity’ or ‘hypoconnec-
tivity’ in one group relative to another may reflect more or
less consistent iFC over time, respectively).

The next step is the development of methods capable of
surveying the entire functional connectome for brain-be-
havior relationships in order to yield empirically grounded
hypotheses that can be tested in replication datasets. Such
approaches constitute a deviation from current practices,
which require data reduction and/or a priori specification

http://fcon_1000.projects.nitrc.org/
http://fcon_1000.projects.nitrc.org/
http://www.humanconnectome.org/
http://sfari.org/funding/grants/abstracts/the-brain-genomics-superstruct-project
http://sfari.org/funding/grants/abstracts/the-brain-genomics-superstruct-project
http://fcon_1000.projects.nitrc.org/indi/adhd200/results.html
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of regions or networks of interest. These requirements
necessarily limit exploration and discard potentiallymean-
ingful information about interindividual variation.
Acknowledging their genetic counterpart, new methods
for exploration are termed Connectome-Wide Association
Studies [70] and rely on multivariate, rather than univari-
ate, statistical approaches (see Box 2).

Deep phenotyping
An early critique of R-fMRI [71] stated that rest was
unlikely to be a productive way to understand network
function. This assertion is incontrovertible – correlated
intrinsic activity itself says nothing about the functions
supported by the networks in which it occurs [9]. Such
understanding can only be obtained by experimental
manipulations in the context of task-based approaches
or by relating interindividual variation in measures of
intrinsic activity to variation in phenotypic measures. This
highlights the importance of investment in the cognitive
and behavioral constructs examined and the tools with
which they are measured. As eloquently outlined by Bilder
and colleagues, phenomics is now the rate-limiting step
preventing the advance of discovery science in neuroimag-
ing [72]. Obtaining community consensus on the pheno-
typic constructs to be explored (cognitive ontologies [73])
will ultimately transform cognitive and psychiatric neuro-
science (Box 3).
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Lost in the cracks
Applying data-driven partitioning techniques (e.g., cluster
analysis) to iFC data can parcellate the brain into distinct
functional systems and units, revealing its functional
‘building blocks’ [3,74–76]. Such efforts typically focus on
identifying functional units that are stable across individ-
uals, rather than how they vary. Yet, interindividual vari-
ation in how functional areas are differentiated from one
another may be of interest in itself. Cohen et al. [58]
provided a key insight when they described ‘transition
zones’: the boundaries between functional areas, indicated
by sharp changes in iFC. Such transition zones are evident
when mapping the confidence or stability of iFC-based
parcellations (e.g., [3,57]) and iFC variability within a
network across individuals (Figure 2). Interindividual var-
iation in these transition zones does not appear to strictly
follow structural variation, but rather variation in task-
evoked activations [58,77]. As such, examination of links
between variation in functional zones and behavior holds
promise: initial studies suggest that the functional con-
nectionsmost strongly related to phenotypic variables [5,6]
and to the magnitude of task-evoked activation [77] are
those that exhibit the greatest variability across individu-
als and lie within these transition zones. The role of
intraindividual dynamic variation in the strength of iFC
[69] in the creation of these transition zones also merits
investigation.
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Toward a mechanistic understanding
We have provided an overview of some of the main chal-
lenges facing intrinsic brain research as the field moves
into an era of discovery. We hold that assimilation of the
methods and ethos of discovery science will propel the field
beyond simplymapping the brain’s functional organization
toward understanding how interindividual variation in
brain organization and function underlie normal and ab-
normal variation in cognition, emotion and behavior. Look-
ing ahead, a mechanistic understanding of brain-behavior
relationships will demand multimodal and translational
approaches. Studies in animal models permit direct struc-
tural, pharmacological, molecular and genetic experimen-
tal manipulations that will provide causal explanations of
intrinsic brain phenomena, as well as the disruptions
associated with clinical disorders. The time scales of ani-
mal development also provide experimentally tractable
timeframes within which to study questions pertinent to
human development and developmental psychopathology.
Already, non-invasive investigations in humans using
EEG [78] and MEG [79,80] have demonstrated relation-
ships between spatial and temporal indices of oscillatory
electrophysiological activity and iFC measures. Together
with invasive studies in non-human primates [48,81,82]
and humans [83,84], these studies provide strong evidence
that the signal fluctuations underlying iFC arise from the
same neuronal substrate as activity occurring on faster
time scales, including those relevant to information pro-
cessing and behavior [84]. A complementary line of re-
search involves the investigation of the impact of intrinsic
(ongoing) brain activity on perception and behavior [85,86].
Finally, computational modeling work employing physio-
logically realistic constraints [87,88] has provided compel-
ling accounts of the emergence of intrinsic fluctuations on
the timescales captured by fMRI from neuronal interac-
tions occurring at faster timescales, as well as plausible
explanations for some of the more puzzling characteristics
of intrinsic activity (e.g., anti-phase relationships between
networks). Continued exploitation of these important lines
of research is sure to spark the next wave of breakthroughs
in our understanding of brain and behavior.
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