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Whole-brain anatomical connectivity in living humans can be modeled as a network with diffusion-MRI and
tractography. Network nodes are associated with distinct grey-matter regions, while white-matter fiber
bundles serve as interconnecting network links. However, the lack of a gold standard for regional
parcellation in brain MRI makes the definition of nodes arbitrary, meaning that network nodes are defined
using templates employing either random or anatomical parcellation criteria. Consequently, the number of
nodes included in networks studied by different authors has varied considerably, from less than 100 up to
more than 104. Here, we systematically and quantitatively assess the behavior, structure and topological
attributes of whole-brain anatomical networks over a wide range of nodal scales, a variety of grey-matter
parcellations as well as different diffusion-MRI acquisition protocols. We show that simple binary decisions
about network organization, such as whether small-worldness or scale-freeness is evident, are unaffected by
spatial scale, and that the estimates of various organizational parameters (e.g. small-worldness, clustering,
path length, and efficiency) are consistent across different parcellation scales at the same resolution (i.e. the
samenumber of nodes). However, these parameters vary considerably as a function of spatial scale; for example
small-worldness exhibited a difference of 95% between the widely-used automated anatomical labeling (AAL)
template (∼100 nodes) and a 4000-node random parcellation (σAAL=1.9 vs. σ4000=53.6±2.2). These
findings indicate that any comparison of network parameters across studiesmust bemadewith reference to the
spatial scale of the nodal parcellation.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Modeling the whole human brain as a network, the so-called
human connectome (Sporns et al., 2005), has gained significant
interest in the last few years. Two distinct types of whole brain
networks have now been empirically mapped using different
magnetic resonance imaging (MRI) modalities: anatomical networks
and functional networks.

An anatomical brain network is derived from diffusion-MRI (d-
MRI) and models the axonal fiber bundles that support information
transfer between spatially isolated grey-matter regions. Structural
connectivity is therefore often referred to as anatomical or physical
connectivity and can be mapped in vivo with tractographic methods.
On the other hand, a functional brain network is typically derived
from measures of functional connectivity; in particular, correlated
activity between regions over time, assessed using either resting-state

functional-MRI (rs-fMRI), magnetoencephalography (MEG) or elec-
troencephalography (EEG).

Efforts have been devoted to elucidating the topological properties
of human brain networks in both health and disease. A summary of
some studies is shown in Table 1.

Topological properties can be mathematically analyzed by char-
acterizing the brain as an undirected graph, where each region-of-
interest composing a grey-matter parcellation serves as a node and
each link represents some statistical measure of association, such as
correlations in physiological time series; interconnecting axonal fiber
pathways; or inter-regional covariance in anatomical parameters such
as cortical thickness (Bullmore et al., 2009).

The two most ubiquitous topological properties that brain net-
works have been tested for are scale-freeness in nodal distribution
(Amaral et al., 2000) and small-worldness (Watts and Strogatz, 1998).
It has been shown that the topology of both anatomical and functional
brain networks exhibit small-world properties (Bullmore et al., 2009).
Such networks are characterized by a high degree of locally clustered,
cliquish, connectivity and low mean path length (i.e. nodes can
connect with each other through only a few hops). Some studies have
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also claimed that the brain is scale-free (e.g. (Eguiluz et al., 2005; Van
den Heuvel et al., 2008), though this view is disputed (e.g. Achard et
al., 2006; Gong et al., 2009). Scale-freeness implies the existence of a
few highly connected hub nodes, which endow a scale-free network
with superior tolerance to random node failures (Albert et al., 2000;
Kaiser et al., 2007). Recent studies have demonstrated these networks
measures are altered in the diseased brain (e.g. He et al., 2008, 2009;
Liu et al., 2008; Wang et al., 2009b).

At the microscopic scale, nodes composing a neural network
naturally correspond to individual neurons. However, at the macro-
scopic scale, it is unclear how grey-matter should be parcellated in
order to define a set of nodes, and at what scale this parcellation
should be performed. The lack of a natural correspondence between
network nodes and grey-matter regions-of-interest has resulted in
the analysis of brain networks across a range of nodal scales spanning
three orders of magnitude, from less than 102 nodes, up to more
than 105. The scale of a parcellation can affect regional connectivity
estimates, particularly in anatomical networks, as exemplified in
Fig. 1. This figure shows an example of a forking U-fiber that is poorly
characterized due to the use of a too coarse parcellation.

Most studies have utilized a subset of the 90 non-cerebellar
regions-of-interest composing the automated anatomical labeling
(AAL) parcellation atlas (Tzourio-Mazoyer et al., 2002) to serve as
nodes (see Table 1). In the case of functional connectivity, (Wang et
al., 2009a) statistically tested differences in the topological properties
of an AAL-based network with a network based on an 70-node
parcellation. While both networks exhibited robust small-world
attributes and an exponentially truncated power law degree distri-
bution, several topological parameters were found to exhibit
significant variations across the two networks.

The substantial disparity in parcellation scales across different
studies raises a question: Does scale matter? Since an underlying
neuronal/axonal network is not necessarily endowed with the same
properties as its macroscopic approximation, do claims of the form
“human brain network shown to exhibit topological property X” need
to be interpreted with respect to scale? For example, the discrepancy
between Eguiluz et al., 2005; Van den Heuvel et al., 2008 versus
Achard et al., 2006; Gong et al., 2009 (i.e. power law nodal distribution
versus exponentially truncated power law) may be attributable to the
orders of magnitude difference in scales considered.

This paper seeks to systematically evaluate the dependence of
whole-brain anatomical networks over a range of nodal scales, a
variety of grey-matter parcellations as well as different diffusion-MRI
acquisition protocols. To this end, networks were analyzed across
scales ranging from 100 to 4000 nodes. For each scale, 100 random
parcellations of grey-matter were generated. Two distinct tracto-
graphic methods were then used to determine which pairs of nodes
were anatomically connected.

A variety of local and global topological properties were computed
for each of the 100 networks, including small-worldness, path length,
clustering coefficient, nodal degree distribution, efficiency and
betweenness centrality. The variation of each topological parameter
across the 100networkswas then assessed to evaluate the discrepancy
in parameter estimates that can be solely attributable to the choice of
parcellation. Quantifying parcellation-driven discrepancies is impor-
tant because the choice of parcellation is usually arbitrary or random.

It was found that topological properties vary markedly with scale.
For example, if one experimenter uses the AAL template, while
another uses a random 4000-node template, the value of small-
worldness measured by the two experimenters will be discrepant by
approximately 95% (σALL=1.9 vs. σ4000=53.6±2.2). Although
small-world attributes were found at all scales, the extent of small-
worldness was found to increase as scale is made finer, resulting from
a large increase in clustering. Exponential nodal degree distributions
were also found at all scales. These findings suggest scale does not
matter if the experimenter simply seeks a yes/no determination
about whether or not a network is small-world or scale-free, but scale
does matter if the experimenter seeks to quantify the extent to which
the network exhibits these topological properties. The variation in

Table 1
Nodal scale and parcellation across some studies of human brain networks, segregated
according to imaging modality.

Study Scale Parcellation

rs-fMRI
Achard et al., 2006 90 AAL
Achard and Bullmore, 2007 90 AAL
Eguiluz et al., 2005a 140,000 Voxel-based
Van den Heuvel et al., 2008 10,000 Voxel-based
Liu et al., 2008 90 AAL
Salvador et al., 2005c 90 AAL
Salvador et al., 200b 90 AAL
Wang et al., 2009a 90 vs. 70 AAL vs. ANIMAL

d-MRI
Gong et al., 2009 78 AAL
Hagmann et al., 2007 500–4000 Gry/Wht. Surf.
Hagmann et al., 2008 998 Gry/Wht. Surf.
Itturia-Medina et al., 2008a 71 IBASPM
Itturia-Medina et al., 2008b 90 AAL

EEG
Micheloyannis et al., 2006 28 Scalp sensors
Stam et al., 2007 21 Scalp sensors

MEG
Bassett et al., 2006 275 Scalp sensors
Deuker et al., 2009 204 Scalp sensors
Stam, 2004 126 Scalp sensors

Anatomical-MRI
Bassett et al., 2008 104 Pick Atlas
He et al., 2007, 2008 54 Jacob Atlas

d-MRI vs. f-MRI
Honey et al., 2009 998 and 68 Gry/Wht. Surf.
Park et al., 2008 73 AAL
Skudlarski et al., 2008 5000 Voxel-based
Zalesky and Fornito, 2009 70 AAL

a Finger tapping task, rather than resting-state. AAL=automated anatomical labeling
atlas; Gry/Wht. Surf.=random parcellation of the two-dimensional grey-white matter
interface; Voxel-based=each grey-matter voxel serves as a distinct node; ANIMA-
L=automated gross anatomy parcellation owing to Collins et al., 1995; IBASPM, see
Alemán-Gómez et al., 2006.

Fig. 1. Example parcellation of a forking U-fiber. The leftmost parcellation is too coarse
and fails to characterize the left branch of the fork. In a graphical model, the left branch
manifests as a self-loop about node 1. The rightmost parcellation is however fine
enough to characterize both branches. The weight assigned to each link corresponds to
the total number of intersecting streamlines.
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topological properties for networks of the same scale, but with
different nodal parcellations was found to be more subtle (b3%).

Methods

Anoverviewof the processingpipeline is shown in Fig. 2. Each of the
ensuing subsections is dedicated to a particular stage of the pipeline.

Data acquisition and pre-processing

A total of 6 d-MRI data sets were acquired; in particular, a 252-
direction (b=4000 s/mm2) high-angular resolution diffusion imag-
ing (HARDI) protocol was acquired in 3 healthy controls (F, 32; M, 23;
M, 25) followed by a 60-direction (b=2000 s/mm2) diffusion tensor
imaging (DTI) protocol acquired in the same 3 subjects. Acquisition of
both HARDI and DTI data sets enabled comparison of networks
derived from tractographic methods that do and do not model the
presence of crossing-fibers.

All data sets were acquired with a spin-echo EPI sequence using a
Siemens Trio 3.0 Tesla scanner (Siemens, Erlangen) located at the
Royal Children's Hospital, Melbourne, Australia. Foremost, 60 gradient
directionswith b=2000 s/mm2were acquired over a 128×128 image
matrix (256×256 mm2

field of view, TE=99ms, TR=8720ms) at 64
consecutive axial slices of thickness 2 mm, thus resulting in voxels
dimensions of 2 mm isotropic. The gradient directions were uniformly
distributed on the half-sphere. This constituted the DTI protocol.

Immediately subsequent to the completion of the DTI protocol, 252
gradient directions b=4000 s/mm2 were acquired over a 128×128
imagematrix (282×282mm2

field of view, TE=120ms, TR=7550ms)
at 48 consecutive axial slices of thickness 2.2 mm, thus resulting in
voxel dimensions of 2.2 mm isotropic. The gradient directions were
obtained from the vertices of a fivefold tesselated icosahedron
projected onto the sphere. This constituted the HARDI protocol,
which was modeled on the protocol developed in Tuch (2004).

Several T2 non-diffusion weighted images were acquired at regular
intervals during both protocols. The total time of acquisition per

subject was approximately 40 mins. The mean SNR of the diffusion-
weighted images was 27.6±0.8 for the DTI acquisition and 14.3±0.4
for HARDI, where the standard deviation was computed over all
diffusion weighted images.

To correct for slight head motion, each diffusion weighted image
was registered to a representative T2 image using a rigid-body
transform. Each representative T2 image was then registered to MNI
space using a 12-parameter affine transform, and the transform was
stored for later use. The diffusion weighted images remained in native
space. Registration was performed using the algorithm in Jenkinson
et al. (2002).

Parcellation

Grey-matter was randomly parcellated into N contiguous regions-
of-interest using a simple parcellation algorithm that was particularly
developed for this purpose. Each region-of-interest was required to
serve as a distinct node (vertex) in a graphical brain model.

The parcellation algorithm was developed to minimize the
variation in nodal volume and was performed at voxel resolution.
The value of N and a binary grey-matter mask (binarized AAL
template) was provided as input to the algorithm.

The algorithm operates as follows: N grey-matter seed voxels are
chosen at random, each of which corresponds to the first voxel to be
classified as belonging to each of the N nodes. All other grey-matter
voxels remain unclassified. The strategy is to incrementally ‘grow’
each node voxel-by-voxel until every grey-matter matter voxel has
been assigned to exactly one node. At each iteration of the growth
phase, a new voxel is assigned to the nodewith the smallest volume. If
two or more nodes are of equally small volume, one is chosen
randomly. The new voxel that is assigned at each iteration is selected
so that the surface area (i.e. voxel faces) between it and the chosen
node is maximal. A voxel cannot be assigned to a node with which it
shares no surface area. If two or more voxels are equally strong
neighbors, the voxel that is closest in distance to the current center of
mass of the node is chosen. Any further ties between voxels are

Fig. 2. An overview of the processing pipeline. The example network shown corresponds to DTI tractography in subject 1 and the 82-node AAL parcellation. The adjacency matrix is
ordered such that all left-hemisphere nodes occupy the first 41 rows. Therefore, the two strongly connected sub-blocks along the diagonal exclusively correspond to intra-
hemispheric connectivity, while the two off-diagonal blocks correspond to inter-hemispheric connectivity.
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broken randomly. Note that the growth of a node may be stunted if all
the voxels with which it shares a surface have already been assigned
to other nodes.

Akin to Hagmann et al., 2007, each node was constrained to lie
within the periphery of one and only one AAL region-of-interest. This
constraint precluded the formation of nonsensical nodes, such as
nodes that encompass both hemispheres. To enforce this constraint,
the parcellation algorithm was invoked separately for each AAL
region-of-interest. In particular, the proportion of streamline end-
points residing in each AAL region-of-interest was first tallied. An AAL
region-of-interest comprising a proportion p of the total number of
endpoints was then parcellated into pN nodes. This ensured more
nodes were assigned to regions-of-interest at which many axonal
pathways terminate. See Appendix for pseudocode of the entire
parcellation algorithm.

To serve as a grey-matter mask, an 82-node version of the AAL
template was binarized (i.e. subcortical nuclei and cerebellum were
omitted). The standard AAL template comprises 116 nodes; however,
all cerebellar and sub-cortical regions-of-interest were omitted
because the HARDI acquisition yielded only partial coverage of the
cerebellum, and accurate grey-matter segmentation in subcortical
regions can be problematic. Since the AAL incorporates significant
portions of white-matter, this template was contracted by a few
voxels in regions where excessive non-cortical coverage was evident.
This contracted AAL-based binary grey-matter mask was registered to
native space using the inverse of the transforms stored during the
preprocessing stage. Since the aim herein is to characterize topolog-
ical attributes as a distribution across all random parcellations of a
fixed scale, N, it was not necessary to ensure the same nodal
parcellation was used for each subject. It was therefore possible to
perform parcellation in native space.

Tractography

For each DTI acquisition, a tensor was fitted to each voxel using
weighted linear least squares (Salvador et al., 2005a). The orientation
of the eigenvector with largest eigenvaluewas assumed to correspond
to the local orientation of any underlying axonal fiber bundle. While
this assumption is entrenched in DTI studies, it is known to yield
erroneous orientations in the case of crossing fibers (Hess et al., 2006).
The eigenvector with largest eigenvalue is henceforth referred to as
the principal eigenvector.

For each white-matter voxel, a streamline was initialized from
each of the two opposing directions of the principal eigenvector. Each
streamline was propagated in fixed increments of 1 mm using the
FACT algorithm (Mori et al., 1999). Propagation was terminated if
either aminimum angle threshold of 50° was violated or if a voxel was
encountered with fractional anisotropy below 0.2. At each increment,
the direction of propagation was parallel to the orientation of the
eigenvector closest to the current streamline endpoint. In subsequent
analysis, the two opposing streamlines initialized from each white-
matter voxel were joined at their point of initialization and considered
to be a single streamline. The coordinates of each streamline were
stored for later use.

For each HARDI acquisition, the higher angular resolution and
higher gradient strength enabled fitting an orientation distribution
function (ODF) to each voxel. Fitting an ODF can potentially capture
the presence of multiple fiber orientations. An ODF was analytically
fitted to each voxel using q-ball reconstruction with spherical
harmonic basis functions (Hess et al., 2006). The appeal of q-ball
reconstruction (Tuch, 2004) relative to alternative ODF reconstruction
techniques such as spherical deconvolution (Tournier et al., 2005) is
that q-ball is model free and thus does not require estimation of a
response function.

For tractographic purposes, each ODF was discretized along 181
directions spanning the half-sphere, yielding an angular sampling

resolution of 10.85°±0.97°. Local maxima of each discretized ODF
were then computed and assumed to correspond to the local
orientation of any underlying axonal fiber bundles. For each white-
matter voxel, a streamline was initialized from each of the two
opposing directions of each local maxima. Streamlines were propa-
gated using precisely the same algorithm and termination criteria
used for DTI tractography. In cases of multiple local maxima, the
direction of propagation was chosen to proceed parallel to the
particular local maximum which was most closely aligned with the
current streamline direction. The claimed advantage of this tracto-
graphic approach (e.g. Hagmann et al., 2007) relative to conventional
DTI tractography is that streamlines can accurately navigate through
fiber intersections and other complex fiber geometries that are poorly
modeled with a single compartment fit.

While several alternative tractographic methods have been
customized to network mapping (e.g. Hagmann et al., 2007; Jbabdi
et al., 2007; Itturia-Medina et al., 2008a; Zalesky, 2008; Zalesky and
Fornito, 2009), this study utilized the DTI and HARDI versions of FACT
streamline tracking (Mori et al., 1999) described above. Local
greediness is a key disadvantage of streamline tracking that has
been shown to obstruct the reconstruction of long fiber bundles (e.g.
transcallosal pathways) due to noise corruption (Zalesky, 2008).
While globally optimal approaches address this disadvantage, they
are more computationally demanding.

Tractographic maps were viewed with TrackVis (http://www.
trackvis.org).

Graph construction

Graph construction involved utilizing tractographic results and an
N-node parcellation as input to populate an N×N connectivity matrix,
formally known as an adjacency matrix. An adjacency matrix
completely specifies the structure of a graph and is denoted herein asA.

A streamline was considered usable if and only if it intersected
grey-matter. Any unusable streamlines were culled from the set of all
streamlines and given no further consideration. Specifically, any
streamline that was wholly constrained to white-matter, the sub-
cortex, the cerebellum or a combination thereof was culled. Culling is
a necessary step to eliminate spurious streamlines that do not
interconnect distinct grey-matter regions. Streamlines that were
less than 5 mm in length were also culled. Fig. 3 shows the set of all,
culled and usable streamlines.

Table 2 shows that while HARDI tractography yielded more
streamlines in total compared to DTI, many of these extra streamlines
were spurious. Nevertheless, as exemplified in Fig. 3, HARDI yielded
significantly stronger inter-hemispheric connectivity.

Let S be the set of all usable streamlines and let s∈ S denote a
particular streamline, where s=(x1, x2,...,xK), x=(x, y, z), is the
ordered set of coordinates defining the streamline's trajectory.
Furthermore, let G nð Þ = x1; N ;xJn

! "
, n=1, 2,…, N, denote the grey-

matter volume encapsulated by the nth node composing an N-node
parcellation, where Jn is the number of voxels encapsulated.

Each streamline was decomposed into three contiguous segments
s=(U, swhite, V), where swhite contains all the white-matter
coordinates, while U and V contain the grey-matter coordinates at
each of the streamline's two extremities. For streamlines constrained
to grey-matter, swhite=∅.

Let u be the first coordinate in the set U and let v be the last
coordinate in the set V (i.e. u and v are the streamline endpoints). An
adjacency matrix was populated such that for i≠ j,

Ai;j =
X

saS

I uaG ið Þf gI vaG jð Þf g + I uaG jð Þf gI vaG ið Þf g;

where the indicator is defined such that I{u∈G(i)}=1 if the endpoint
coordinate u resides within the volume G(i), otherwise I{u∈G(i)}=0. In
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words, the above equation stipulates that element Ai,j is populated
with the total number of usable streamlines that traverse the volume
encapsulated by both nodes i and j. This resulted in an adjacency
matrix that defines a simple, undirected and weighted graph.

Since some topological properties of a weighted graph are ill-
defined, each graphwas binarized simply by assigning unity weight to
all non-zero entries. This resulted in a sparse, un-weighted graph
comprising one giant connected component. For the finest scales
considered, some nodes were disconnected from the giant compo-
nent. No cases were encountered in which more than 3% of the nodes
were disconnected. Sparsity (ratio of nodes-to-links) ranged between
approximately 5 and 700, where the finest scales considered yielded
the most sparse networks. A discussion of this large difference in
sparsity is given in Section 4.

Unlike rs-fMRI network modeling, a thresholding process was not
necessary because the weighted adjacency matrix is intrinsically
sparse, since most node pairs are not interconnected by even a single
streamline. In contrast, with rs-fMRI, a non-zero, albeit a possibly
small functional correlation is found between all network nodes,
hence necessitating the use of a thresholding procedure to yield a
sparse adjacency matrix.

Several alternative approaches for populating an adjacency matrix
have been advocated. In (Gong et al., 2009), streamline propagation is
terminated at the first point grey-matter is encountered and only this

point dictates the structure of the adjacency matrix. The advantage of
this approach is the avoidance of streamline propagation deep within
grey-matter, which can potentially be unreliable due to the isotropy of
grey-matter. The disadvantage is that a node remains disconnected if
it does not reside on the grey-white matter boundary (i.e. ‘landlocked’
between other nodes). With this approach, it must therefore be
ensured that all nodes composing a parcellation template are carefully
defined to avoid landlocked regions-of-interest. Note that the concept
of a landlocked node does not apply to approaches in which
streamlines can continue to propagate within grey-mater.

Topological properties

Several local and global topological properties were evaluated;
specifically: average path length, clustering coefficient, small-world-
ness (Watts and Strogatz, 1998), nodal degree distribution (Amaral et
al., 2000), local efficiency and global efficiency (Kaiser and Hilgetag,
2006; Latora and Marchiori, 2001) and betweenness centrality
(Freeman, 1979; Newman, 2003). Each of these properties and their
biological significance has been defined and discussed in detail
elsewhere (e.g. (Bullmore et al., 2009; Bullmore and Sporns, 2009;
Sporns et al., 2004)). Standard formulae (Newman, 2003)were utilized
to compute each measure. To avoid the computational nuisance in
dealingwith infinite path lengths, the path length of any node that was
disconnected from the giant component was set to the maximum path
length between any pair of nodes in the giant component.

Let cG denote the average clustering coefficient and let lG denote
the average path length of a graph G. To test for small-worldness of G,
the σ-ratio, σ=γ/λ was evaluated, where γ=cG/cR , λ= lG/lR and R
represents a ‘random’ graph that is equivalent to G. According to the
σ-ratio, G was diagnosed as small-world if γN1 and λ≈1. These
two conditions were abbreviated to the single test σN1.

In many studies, a random graph Rwas considered equivalent to G
if and only if R and G exhibit an identical nodal degree distribution. To

Table 2
Summary of streamline statistics segregated according to subject and acquisition.

Subject 1 Subject 2 Subject 3

DTI HARDI DTI HARDI DTI HARDI

Total [×103] 100 211 101 160 118 208
Usable [×103] 28 38 32 36 39 44
Usable % 28 18 32 23 33 21
Mean [mm] 21.5 29.6 25.5 30.3 27.0 32.7

Fig. 3. The set of all, culled and usable streamlines. Streamlines representing the cortico-spinal tract and cerebellum were culled. Streamlines less than 5 mm in length (prevalent in
HARDI) were considered spurious and also culled. The set of usable streamlines characterize cortico-cortical connectivity. Axial orientation: bottom of page is posterior. Coronal
orientation: coming out of page is anterior.
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compute a random graph R satisfying this equivalence criterion, the
iterative randomization algorithm presented in Maslov and Sneppen
(2002) or the sequential algorithm in Bayati et al., 2007 can be
invoked. In Achard et al. (2006); Van denHeuvel et al. (2008); Liu et al.
(2008), the algorithm inMaslov and Sneppen (2002)was reinvokedM
times to computeM random graphs R1,…, RM equivalent to G, thereby
affording the Monte-Carlo approximation cR = hcR1 ; N ; cRM i and
lR = hlR1 ; N ; lRM i.

Approximating cR and lR as such was intractable for the large
graphs that were considered herein. Instead, well-known analytical
results for an equivalent Erdős–Rényi randomgraph; namely, cR=d/N
and lR=log N/log d were used, where d denotes average nodal
degree. The disadvantage of this analytical approach is that it was

necessary to relax the definition of equivalence between G and R;
specifically, it was no longer insisted that G and R exhibit an identical
nodal degree distribution, but only identical average nodal degree.

We assessed the consequence of matching average nodal degree
instead of the entire degree distribution by estimating the σ-ratio for
a few computationally tractable cases using the randomization
algorithm devised in Bayati et al. (2007) to generate 500 random
graphs. This algorithm yields normalizing graphs that are matched in
degree distribution. It was found that matching the average nodal
degree (i.e. Erdős–Rényi normalization) yielded a more conservative
estimate of the σ-ratio compared to matching the entire degree
distribution. Specifically, in the case of the AAL, Erdős–Rényi
normalization yielded σ=2.6, 2.5 and 2.5 for each of the three

Fig. 4. Small-worldness (σ-ratio) as a function of the number of nodes. Each data point was computed as follows: for each acquisition and for each of 100 random parcellations, a
brain network was constructed and its σ-ratio computed. The mean and standard deviation of the 100 σ-ratios was computed separately for each of the 6 acquisitions (3 HARDI and
3 DTI), thereby yielding 6means and 6 standard deviations. Finally, themeans and standard deviations were averaged across the 3 DTI acquisitions and separately across the 3 HARDI
acquisitions, thereby yielding two data points (blue and red) for each nodal scale. The null hypothesis σDTI=σHARDI was rejected with pb10−8 for all nodal scales considered. Also
shown is a sagittal representation of some arbitrarily chosen parcellations of varying scale.
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subjects (DTI acquisition), while matching the full degree distribution
yielded σ=3.0±0.2, 2.9±0.1 and 3.7±0.1. This suggests Erdős–
Rényi normalization yields a stricter definition of small-worldness.

To test for scale-freeness of a graph comprising N nodes, the
degree of each node was ranked from 1,…, N such that the node with
highest degree was ranked with the index 1 and the node with the
lowest degree was ranked with the index N. Nodal rank as a function
of degree was then plotted on a set of doubly logarithmic axes. A
roughly linear rank-degree plot is indicative of a scale-free degree
distribution, since a scale-free degree distribution di is defined such
that di=cyi−α, where yi is the rank of di, and c and α are constants.
Since log(di)=log (c)−α log(yi), plotting rank versus degree on
doubly logarithmic axes yields a line of slope −α. Rank-degree plots
were opted for in favor of the more common frequency-degree plots
utilized in Achard et al. (2006); Gong et al. (2009); Hagmann et al.
(2007); Van den Heuvel et al. (2008). This is because the binning
process involved in generating a frequency-degree plot has been
shown to introduce artifacts (see (Liu et al., 2005)).

Evaluation

The processes detailed in Sections 2.2–2.5 were repeated 100
times for parcellations of scale N=82 (AAL), 100, 500, 1000, 2000,
3000, 4000 and for each of the 6 acquisitions (3 HARDI and 3 DTI).
Therefore, a total of 100×6×6=3600 networks were mapped,
represented as a graph and evaluated for the presence of several
topological properties.

For each nodal scale,N, and for each subject, themean and standard
deviation of eachmeasurewas computed across the 100 networks (i.e.
100 random parcellations of the same scale). In this way, each
topological attribute was characterized as a distribution across all
parcellations of a fixed scale N. This distribution represents the
variation of a measure across different parcellations of the same scale.

Of equal importance was the variation of a measure across
parcellation templates of different scale. This kind of variation is
useful in determining the compatibility of the results reported in
studies utilizing significantly different scales, for example, Skudlarski
et al. (2008) (5000-node) versus Gong et al. (2009) (78-node AAL). To
this end, the above described mean and standard deviation was
plotted for each global measure as a function of scale. To avoid
cluttering, rather than plotting a trace for each subject, the means and
standard deviations were averaged across the 3 DTI acquisitions and
separately across the 3 HARDI acquisitions, thereby yielding two
distinct traces that enable explicit comparison of HARDI and DTI. This
across subject averaging also assists in suppressing the effects of
variation owing to individual anatomical differences.

The distribution of relative error between two distinct parcella-
tions of the same scale was computed for each global measure and the

mean of this distribution was tabulated. The distribution of relative

error was constructed by enumerating all 100
2

# $
= 4950 pairs of

parcellations from the pool of 100 and computing the relative error
between each pair for the particular measure of interest. The mean of
this distribution was then computed across the 4950 pairs to yield the
expected relative error at a given scale. This enables quantitative
evaluation of questions of the form: if an experimenter computes
small-worldness with respect to a particular N-node parcellation,
while a second experimenter performs the same computation with
respect to an alternative N-node parcellation, what is the expected
difference (relative error) between the values of small-worldness
computed by both experimenters?

Results

The first topological property considered was small-worldness,
σ=γ/λ. Fig. 4 shows small-worldness plotted as a function of the

number of network nodes. A distinct trace is shown for HARDI (blue)
and DTI (red). The dashed lines correspond to 95% confidence
intervals. Fig. 4 also shows a sagittal representation of some arbitrarily
chosen parcellations of varying scale.

The variability in the σ-ratio is rather small across parcellations of
the same scale which can be assessed by the tightness of the
confidence intervals in Fig. 4. In contrast, the σ-ratio exhibits a
marked increase as nodal scale is made finer. This means finer
parcellations give rise to ‘stronger’ small-world attributes. For
example, in the case of HARDI, the σ-ratio is approximately 95%
greater for a 4000-node template (σ=53.6±2.2) compared to the
AAL (σ=1.9). Therefore, a σ-ratio should be reported and compared
across studies with respect to a parcellation scale.

For each nodal scale, the null hypothesis σDTI=σHARDI was tested
using a two-tailed Student's t-test. The standard deviations used to
construct this t-test accounted for the variation of the σ-ratio across
different parcellations of the same scale.

The null hypothesis σDTI=σHARDI was rejected with pb10−8 for
all nodal scales considered. Note that the null hypothesis was not

Fig. 5. Average clustering coefficient and path length (raw, G, equivalent random graph,
R, and normalized value). Normalization is with respect to an equivalent Erdős–Rényi
random graph with the same number of nodes and same average nodal degree.
Confidence intervals were suppressed for the intervals were too small to distinguish in
most cases. The discrepancy between HARDI and DTI was statistically significant with
pb10−4 for both the raw and normalized values of l and c, and for all the scales
considered.
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tested for the AAL (N=82), since there is no parcellation variation in
this case.

Fig. 4 shows that networks owing to DTI derived tractographic
maps exhibited stronger small-world attributes than their HARDI
counterparts; in particular, a relatively consistent difference of
approximately 8.5 was evident in the σ-ratio for all scales considered
beyond 1000 nodes. Was this due to a higher clustering coefficient, γ,
or a shorter average path length λ? (Since σ=γ/λ, stronger small-
world attributes can be owing either to an increase in clustering, a
decrease in path length or a combination of both.) To address this
question, the normalized path length, λ= lG/lR, and the average
normalized clustering coefficient, γ=cG/cR, were plotted as function
of the number of nodes in Figs. 5a and b, respectively. These two
figures adhere to precisely the same format as the plot presented in
Fig. 4.

To understand the effect of normalization, the ‘raw’ (i.e. non-
normalized) clustering coefficient, cG, and the raw path length, lg, was
also plotted in Fig. 5. In this way, the raw clustering coefficient was
explicitly decoupled from the analytically derived coefficient of the
normalizing Erdős–Rényi random graph model.

Consideration of Fig. 5 shows path lengths are marginally longer in
DTI relative to HARDI, however, this difference in path length is
overshadowed by a significantly higher clustering coefficient in DTI.
Hence, the net effect is an increase in the σ-ratio for DTI. In other

words, DTI-derived networks exhibit slightly longer path lengths, but
significantly greater clustering. Therefore, with HARDI, only a few
links (streamlines) need to be traversed to travel a long distance,
whereas with DTI, the presence of many short links yields high
clustering but also means many links must be traversed to travel a
commensurate distance. This explanation is further supported by

Fig. 6. Cumulative distribution function of streamline length segregated with respect to
HARDI and DTI. This plot confirms HARDI tractography yields longer streamlines. For
example, in the case of DTI, 78% of streamlines are less than 40mm in length, while only
72% are less than 40 mm for HARDI.

Fig. 7. Global network efficiency. The null hypothesis of equal network efficiency for
HARDI and DTI was rejected with pb10−8 for all nodal scales considered.

Fig. 8. Nodal rank plotted as a function of degree for DTI and HARDI. For each of 100
random parcellations, a brain network was constructed and its degree sequence ranked
such that the node with largest degree was assigned a rank of one. For each rank, the
mean of the corresponding nodal degree was computed across the 100 networks. This
process was repeated for the three acquisitions. Therefore, a total of 100×3=300
networks were ranked. Rank-degree plots were then constructed based on the average
across these three acquisitions.

Table 3
Least squares fit of the three parameters underlying the exponentially truncated power
law model yi = cdα − 1

i e−di =k .

N=100 N=500 N=2000 N=4000

DTI
k 2.8 4.0 4.0 3.5
α 3.0 2.0 1.5 1.3
c 0.52 0.72 1.9 3.8

HARDI
k 3.6 5.7 5.5 4.8
α 3.4 2.0 1.4 1.2
c 0.1 0.5 1.5 3.1
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Fig. 6, which shows the distribution of streamline lengths for HARDI
is skewed towards longer streamlines relative to DTI.

It is important to remark that the expression of stronger small-
world attributes does not suggest DTI has yielded a biologically truer
network model of anatomical connectivity. The purpose herein is not
to determine which choice yields a truer networkmodel, but rather to
draw attention to the fact that topological properties can indeed vary
markedly across different tractographic methods, acquisition proto-
cols, and parcellation scales and templates.

For coarse parcellation scales, the discrepancy in clustering and
path length between DTI and HARDI is negligible, however, for a
4000-node scale, this discrepancy is approximately 31% with respect
to normalized clustering (111.7±4.8 versus 77.5±2.9) and approx-
imately 19%with respect to normalized path length (1.8±0.04 versus
1.4±0.03). Fig. 5 shows that in the case of HARDI, clustering and path
length is approximately 97% and 11%, respectively, greater for a 4000-
node template compared to the AAL. All these discrepancies between
HARDI and DTI were found to be statistically significant. Specifically,
for all the nodal scales considered, each of the following null
hypotheses was rejected with pb10−4: γHARDI=γDTI, λHARDI=λDTI,
lG;HARDI= lG;DTI and cG;HARDI=cG;DTI. A two-tailed Student's t-test was

used to assess statistical significance, where the standard deviation
used to compute this t-test quantified the variation of each measure
over parcellations of the same scale.

The next measure considered was global network efficiency
(Latora and Marchiori, 2001), which is inversely related to path
length. Fig. 7 shows efficiency plotted as a function of the number of
nodes and demonstrates efficiency decreases as nodal scale is made
finer. HARDI yielded a marginally more efficient network than DTI. In
particular, the null hypothesis of equal network efficiency for HARDI
and DTI was rejected with pb10−8 for all the nodal scales considered.
The higher efficiency of HARDI may be due to the greater proportion
of long range connections (e.g. transcallosal fibers evident in Fig. 3)
identified with HARDI, which serve to shorten average path lengths.
Another explanation stems from the fact that slightly more nodes
were disconnected from the giant component in DTI, although no case
was encountered wheremore than 3% of all nodes were disconnected.
Disconnected nodes were assigned an efficiency of zero, thereby
reducing the average efficiency estimate. Efficiency obeys the same
trends that have already been explicated with respect to clustering
and path length; namely, variation in efficiency across parcellations of
the same scale is rather small, however, variation across different
scales is much greater. Indeed, for any pair of nodal scales that was
considered, the discrepancy in the values of small-worldness, global
efficiency and normalized clustering coefficient between the pair was
significant (pb0.01). The same can be said of the normalized path
length, except the discrepancy between the 1000 and 2000, and 2000
and 3000 nodal scales was not significant for this particular measure.

To test for scale-freeness, degree rank was plotted as a function of
degree on a doubly logarithmic axis. This plot is shown for HARDI and
DTI in Fig. 8, where a separate trace is shown for N=AAL, 500, 2000
and 4000 nodes. For all the scales considered, linearity is evident in
Fig. 8 for low degrees; however, a tail-off is also apparent for high
degrees. This suggests anatomical brain networks are not scale-free,
but rather heavy-tailed.

Table 4
Relative error, |x−y|/max (x, y), in the value of small-worldness, σ, normalized
clustering coefficient, γ, and normalized path length, λ, computed across random
parcellations of the same scale. Values averaged across the three DTI acquisitions.

# Nodes Small-worldness Clustering Path length

82 (AAL) 0 0 0
100 1.4±1.1% 1.3±1.0% 0.3±0.2%
500 1.9±1.5% 1.7±1.3% 0.7±0.6%
1000 2.3±1.9% 2.0±1.6% 0.8±0.6%
2000 2.3±1.7% 2.1±1.6% 0.9±0.7%
3000 2.7±2.0% 2.2±1.6% 1.2±1.0%
4000 2.5±2.1% 2.3±1.8% 1.2±1.0%

Fig. 9. Nodal degree (x=4 mm MNI).
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To further investigate degree scaling, each empirical degree
distribution shown in Fig. 8 was fitted to three distinct models: a
power law, yi=cdi–α; an exponential, yi = ce−αdi ; and, an exponen-
tially truncated power law, yi = cdα − 1

i e−di =k, where di and yi are the
degree of the ith node and complementary distribution function,
respectively. Note that each of these models can be linearized by
taking the logarithm of both sides. Hence, the empirical data could be
fitted to each model using least squares. Goodness-of-fit was
compared using the deviance of the fit at the computed solution as
well as Akaike's information criterion. Of the threemodels considered,
the exponentially truncated power law consistently yielded the best
fit for both HARDI and DTI, and for all the scales considered. In
particular, the exponentially truncated power law never yielded less
than a 70% better fit than the other two models, while the deviance of
the fit never exceeded 2. Table 3 tabulates the least squares fit of the
three parameters underlying the exponentially truncated power law
model. Note that the cut-off degree, k, is higher for HARDI for all the
scales considered.

For each of themeasures considered, Table 4 tabulates the expected
difference (relative error) between the values of a measure computed
by two experimenters who follow precisely the same methodology
and use the same data set, but employ different parcellations of the
same scale. The purpose of this is to quantitatively answer: to what
extent will the two experimenters appear to be in error with each
other due to the use of different parcellation templates of the same
scale? In other words, Table 4 quantifies the size of the confidence
intervals shown in Figs. 4 and 5. Relative errors were computed with
the permutation based approach described in Section 2.6. Note that
since the AAL template is fixed, its relative error is zero.

Table 4 shows that the maximum discrepancy between the two
experimenters never exceeds 3% for any of themeasures. Path length is
the least sensitive to parcellation differences, while small-worldness
and clustering offer roughly the same stability. Since the parcellation
scheme employed herein was constrained by the AAL, in the sense that
each node was required to lie within one and only one AAL region-of-
interest, the discrepancies reported in Table 4may be smaller compared
to a non-constrained parcellation scheme. We implemented a non-
constrained parcellation scheme (i.e. nodeswere permitted to lie across
multiple AAL regions-of-interest) and can report that the maximum
discrepancy increased to approximately 16% for small-worldness and
clustering, and approximately 4% for path length.

Finally, some local measures were considered; namely, nodal
degree and betweenness centrality. The presentation and interpreta-
tion of a local measure is more intricate because a separate valuemust
be considered for each of possibly thousands of nodes.

Fig. 9 shows a sagittal representation of nodal degree at slice
x=4 mm of MNI space. The four rows correspond to parcellations of
scale 82 (AAL), 500, 1000 and 3000 nodes. Each of the 6 acquisitions
(DTI and HARDI in each of 3 subjects) is represented by a separate
column, while the last column corresponds to the average over all
acquisitions. For each of the non-AAL cases, each slice is the average
over 100 random parcellations. For example, the slice shown in row 2,
column 1, corresponds to the average over 100 random parcellations
of scale N=500 for DTI in subject 1, while the slice shown in row 2,
column 7, corresponds to the grand average over each of the 6
acquisitions and over each of the 100 random parcellations for each of
the 6 acquisitions.

Fig. 9 reveals that the nodes of highest degree are located in the
cingulate cortex and to a lesser extent in the parietal/occipital lobe.
Previous diffusion-MRI studies have also reported strong anatomical
connectedness of the cingulate. For example, Beckmann et al., 2009
segmented the cingulate cortex into 9 subregions based on its
connectivity profile with 11 target regions, including the hippocam-
pus, amygdala, orbitofrontal, parietal, precentral andprefrontal cortex.

In Fig. 9, the strong connectedness of the cingulate is most
apparent for the 500 and 1000-node parcellations; however, the

presence of the cingulate is not striking in the case of the AAL, while
only the anterior cingulate is apparent for the 3000-node case. This
suggests nodal degree exhibits strong dependence on parcellation
scale.

Fig. 10 shows the distribution of nodal betweenness centrality for
the cases of 100 and 1000 nodes. Nodes have been sorted such that
the node exhibiting the highest centrality is labeled one, while the
node exhibiting the lowest centrality is labeled N. A node that
exhibits a large betweenness centrality indicates that it is traversed
by the shortest interconnecting path for many node pairs. Fig. 10
shows betweenness centrality is marginally higher for DTI relative to
HARDI, although a crossover point is evident in Fig. 10b. DTI exhibits
higher betweenness centrality due to longer path lengths. In
particular, the longer paths for DTI traverse more nodes than their
shorter HARDI counterparts, thereby resulting in higher betweenness
centrality.

Discussion and conclusions

In most natural and engineered networks, what constitutes a node
and what constitutes a link is clear and well-defined. For example, in

Fig. 10. Nodal betweenness centrality.
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social networks, nodes represent individuals (or organizations), while
links represent relationships, friendships, etc. When the Internet is
modeled as a network, nodes represent computers (or routers), while
links represent thewiring and optical fibers that interconnect them. In
food webs, nodes represent particular species of animal, while links
represent predator/prey relationships.

In macroscopic human brain imaging data, the best definition of a
node is unclear. As a consequence, experimenters have used a variety
of template-based definitions, each varying with respect to the size,
location, definitional criteria and number of nodes specified. In
particular, inter-study variations in the number of nodes analyzed
have been of several orders of magnitude, raising a basic question of
comparability.

This raises a basic question of comparability and consistency
across studies. Specifically: what is the dependency of various
network properties on nodal definition and parcellation scale, given
the lack of a standard parcellation template or scale. The purpose of
this paper was to quantify the extent of dependency of several local
and global topological properties on: scale (i.e. number of nodes),
parcellation (i.e. location of borders separating nodes) as well as the
acquisition protocol and tractographic method (i.e. HARDI-based
tractography accounting for crossing fibers versus DTI-based stream-
line tractography).

The results presented herein are most easily understood in the
context of two experimenters who seek to uncover the topological
properties of a diffusion-MRI derived brain network. It was shown if
both experimenters use distinct parcellations of the same scale, the
values of small-worldness (σ-ratio), clustering coefficient and path
length reported by the two experimenters will not be discrepant by
more than 3%. This assumes both experimenters use a random
parcellation template constructed using a scheme akin to the one
devised herein. It was not investigated whether this discrepancy
remains for two different parcellations constructed using distinct
anatomical criteria, primarily due to the lack of fine-grained
anatomically-driven parcellations. As shown in Table 1, previous
studies investigating scales beyond 100 nodes have predominantly
utilized random parcellations. The discrepancy found between
parcellations may be attributable to a single node that artificially
combines several functionally/anatomically distinct grey-matter
regions into a single entity (as exemplified by the example introduced
earlier in Fig. 1), or two nodes that artificially subdivide a unitary
functional region.

Suppose now the first experimenter uses a 4000-node template,
while the second experimenter uses the AAL template. This situation
roughly exemplifies the studies of Achard et al., 2006 versus Van den
Heuvel et al., 2008 (90 nodes versus 104 nodes). In this case, the
discrepancy in value of small-worldness reported by the two
experimenters increased to about 95% on average. This discrepancy
is indeed consistent with the σ-ratios reported in Achard et al., 2006
and Van den Heuvel et al., 2008, although it must be remembered that
these studies considered rs-fMRI networks. Specifically, Achard et al.,
2006 (90 nodes) reported σ-ratios in the range 1.42–2.30, depending
on the wavelet scale, while Van den Heuvel et al., 2008 (104 nodes)
reported σ-ratios as high as about 45 for the sparsest network
configurations. Discrepancies of a similar magnitude were found in
this situation for the other global measures considered.

Finally, suppose the first experimenter now acquires his/her data
with a HARDI protocol (252 gradient directions), which enables him/
her to fit an ODF to each voxel and thereby model multiple axonal
orientations. Meanwhile, the second experimenter persists with 60
gradient directions, a 50% weaker diffusion gradient (b=2000 s/
mm2) and fits a single-compartment Gaussian diffusion profile to
each voxel. In this case, the discrepancy in the value of small-
worldness reported by the two experimenters was negligible at the
coarsest scales considered, but increased to about 13% for a scale of
4000 nodes. At a scale of 4000 nodes, the discrepancy in the values of

clustering and path length was 31% and 19%, respectively. This
discrepancy is solely attributable to the differences in the acquisition
protocol and tractographic algorithm.

It was observed that finer parcellation scales resulted in stronger
small-world attributes (i.e. larger σ-ratio, albeit a slightly longer
average path length), due to a disproportionate increase in the
clustering coefficient. There are several possible reasons for this
disproportionate increase in clustering at finer scales. The most likely
explanation is that networks of finer scale are inherently more sparse,
and thus exhibit increased clustering due to this greater sparsity. In
Fig. 11, sparsity (ratio of nodes-to-links) is plotted as a function of
scale. Note that in rs-fMRI networks, the σ-ratio has been shown to
increase as sparsity is increased; in particular, as links representing
weak functional correlations are excluded (e.g. see Fig. 4 in Van den
Heuvel et al., 2008).

Another possibility is that this may be an intrinsic property of
small-world networks. As the size of the network increases, a greater
proportion of connections may be local, as only a few long-range
connections are required to produce a dramatic reduction in mean
path length. Other possible explanations implicate technical reasons.
For example, it may be that the smaller size of a node at finer scales
makes it less likely that it will be connected by a long-range
connection. Alternatively, increased clustering at finer scales may
arise because the average distance between neighboring nodes
becomes smaller, making it more likely that they are connected.

To eliminate any potential effects driven exclusively by the
sparsity variation found across different scales (see Fig. 11), we
could have forced all networks to match the sparsity of the sparsest
networks analyzed, which were the 4000-node cases. This would
involve eliminating the weakest links (i.e. those comprising the
fewest number of streamlines) one at a time until sparsity reaches the
value of the most sparse network. Therefore, all network scales would
be matched with respect to sparsity, thereby precluding effects owing
to sparsity variation. However, we did not implement this approach
because this is not what happens in practice. Since d-MRI networks
are intrinsically sparse (unlike their rs-fMRI counterparts), an
experimenter has no need to eliminate any links. Indeed, the process
of eliminating links is rather unjustified, unless the links are known to
be spurious, and can be viewed as artificially forcing a network from
its natural sparsity level to match an arbitrarily chosen sparsity
threshold. We therefore opted to analyze all networks at their
intrinsic sparsity. In doing so, we have assumed effects owing to
sparsity variation are not artefact, but rather natural topological
differences.

Local topological attributes were investigated by calculating the
degree of each node. Nodes with highest degree, corresponding to

Fig. 11. Connection sparsity (ratio of the number of nodes-to-links) as a function of the
parcellation scale. Values plotted are averages across the three subjects.
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network hubs, were identified in medial frontal and parietal areas,
and to a lesser extent, lateral fronto-temporal regions. A similar
pattern has been observed by others, suggesting these regions may
comprise a structural core of anatomical connectivity (Hagmann et al.,
2008). This pattern was broadly conserved across scales, although
regional heterogeneity was reduced at finer scales. The spatial
patterns observed with HARDI and DTI were again broadly consistent,
although more high degree nodes were identified particularly on the
lateral surface with the HARDI acquisition.

The results presented herein suggest that both local and global
topological properties of human brain networks exhibit strong
dependence on the choice of parcellation scale. It is important to
emphasize that this strong dependence does not suggest a given
parcellation scale is any more “optimal” than another.

A critical question that remains is: What parcellation scale
should the experimenter employ? This question should be settled
with consideration of several pragmatic issues. In particular, the
experimenter should employ a sufficiently fine parcellation scale in
order to mitigate template-driven dependencies; however, several
practical considerations preclude the use of arbitrarily fine scales.
As the parcellation scale is made finer, the volume (or surface
area) encapsulated by each node is reduced, and thus the pro-
bability that a streamline intersects this volume approaches zero. A
node that is not intersected by any streamlines remains discon-
nected from the network. And if only a few streamlines intersect
each node, a noisy connectivity matrix is likely to result because
whether or not a pair of nodes is connected wholly depends on the
existence of a few streamlines. A potential solution is to increase
the number of streamlines initiated when considering finer scales;
however, this introduces additional computational burden. In the
case of rs-fMRI networks, a reduction in nodal scale results in a
reduction in the SNR of the time series at each node, which in turn
adds noise to the connectivity matrix. This is because the time
series at each node is derived as an average across all voxels
composing the node.

While the focus herein was on modeling macroscopic connectivity
in the human brain, it should be recognized that the first brain
networks to be characterized as a graph were in fact microscopic; in
particular, the entire nervous system of the nematode Caenorhabditis
elegans was mapped with electron microscopy (Achacoso and
Yamamoto, 1992) and analyzed as a graph (White et al., 1986). For
this case, the choice of nodes was obvious: individual neurons
correspond to nodes, while links characterize axons. The issue of
nodal choice first arose when brain networks of mammalia such as the
cat and macaque were analyzed (Felleman and Van Essen, 1991;
Hilgetag et al., 2000a,b; Sporns et al., 2007; Young, 1993).

This study utilized FACT streamline tracking (Mori et al., 1999) to
perform tractography. The FACT algorithm is simple, robust, compu-
tationally inexpensive and arguably the most ubiquitous tracking
algorithm in use today. These four factors were the key determinant in
the choice of tracking algorithm in this study.

However, it is important to remark that streamline tracking is not
without its limitations. For example, local greediness is one such
limitation that has been shown to obstruct the reconstruction of long
distance connections (Zalesky, 2008). A streamline can be irrecov-
erably steered off-course if it traverses a region at which there is some
uncertainty in the direction of propagation, either due to partial
volume effects, a poor fit of the diffusion tensor (DTI) or ODF (HARDI),
or simply due to noise. The longer a streamline, the greater the
probability of encountering this kind of local uncertainty.

This limitation, among others, has motivated the development of
new tractographic methods founded on novel concepts such as
shortest paths in a graph (Itturia-Medina et al., 2008a), maximum
flow in a graph (Zalesky and Fornito, 2009), Navier–Stokes fluid flow
(Hageman et al., 2009) and global parametrization of connections
(Jbabdi et al., 2007). These methods were not investigated in this

study. Seeding probabilistic streamlines (Behrens et al., 2003; Behrens
et al., 2007) from each node is yet another alternative.

In this study, a common set of streamline termination criteria were
used for both HARDI and DTI tractography; otherwise, it could not

Fig. 12. σ, λ and γ plotted as a function of the total number of nodes, where a separate
trace is shown for each subject and acquisition (HARDI and DTI in each of 3 subjects).
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have been ruled out that any discrepancies found between the two
acquisitions were solely attributable to different termination criteria.
If the termination criteria for HARDI were instead based on genera-
lized FA (Tuch, 2004), the discrepancies found between HARDI and
DTI may have been greater, due to the potential reduction in the risk
of HARDI streamlines terminating prematurely.

Macroscopic network models of the human brain have been
analyzed over a wide range of nodal scales, a variety of parcellation
templates, different acquisition protocols as well as tractographic
methods tailored to these protocols. It is important to recognize that
topological attributes of these networks exhibit strong dependence on
these parameters, especially nodal scale. As such, it is critical that a
reported σ-ratio (small-worldness), clustering coefficient, etc. is
considered with respect to a particular scale and parcellation
template. This paper quantified the expected discrepancy in the
value of several topological measures that would arise across studies
employing disparate nodal scales, parcellation templates and tracto-
graphic algorithms.

An investigation of the inter-subject variability of anatomical
network measures may be a fruitful avenue along which this study
could be extended and would complement the work of Deuker et al.,
2009 in which inter-subject variability was examined in functional
network models derived from MEG data.
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Appendix 1

Appendix A1: Parcellation algorithm pseudocode

Algorithm 1 was invoked to generate random parcellations of grey-
matter comprising N contiguous nodes. Each node was constrained to
lie within one and only one AAL region-of-interest. This constraint
precluded formation of nonsensical nodes, such as those that span both
hemispheres or multiple, anatomically distinct regions. The number of
nodes (i.e. proportion of N) designated to an AAL ROI was proportional
to the total number of streamline endpoints residing in that ROI.

Algorithm 1 Generate a random, voxel-based parcellation of grey-
matter comprising N contiguous nodes. Each resulting node is
confined to boundaries of precisely one AAL region-of-interest (ROI).

Inputs:

• An denotes a set of voxels composing nth AAL ROI, where n=1,…, 82;

• pn b1 denotes the proportion of streamline endpoints residing in the
nth AAL ROI (tractography output);

• N denotes desired number of nodes.

Outputs:

• Jn denotes the number of nodes into which the nth AAL ROI subdivided;
• Gn(j) denotes set of voxels composing jth node of nth AAL ROI,
where n=1,…, 82 and j=1,…, Jn.

1: for n=1, 2, . . . , 82 do
2: Jn := ⌊pnN⌋
3: Gn jð Þf gJnj = 1 :=parcellate_AAL_ROI(Jn,An)
4: end for
5: return Gn(j), ∀n=1,…, 82; ∀j=1,…, Jn

1: subroutine: parcellate AAL_ROI_(J,A) ≡
2: for j=1, 2,…, J do
3: Randomly choose a voxel from A. Let x ∈ A be that voxel.
4: A ← A − {x}
5: G(j) :={x}
6: end for
7: J :={1, 2,…, J}
8: while A≠∅ do
9: j⁎ :=arg minj∈J {|G(j)|}
10: if exists at least one voxel in A that neighbors at least one voxel

in G(j⁎) then
11: Determine which voxel in A is the closest neighbor of

G(j⁎). Let x ∈ A be that voxel.
12: G(j⁎) ← G(j⁎) + {x}
13: A ← A – {x}
14: else
15: J ← J – {j⁎}
16: end if
17: end while
18: return {G(j)}j=1

J .

After Algorithm 1 has terminated, note that ∑n=1
82 Jn≤N. That is,

the final number of nodes, ∑n=1
82 Jn, may be slightly less than the

requested number of nodes N. If this is of concern, set JnT : = JnT + 1,
where n⁎ is randomly chosen from {1,…,82}, and repeat
N − P82

n = 1 Jn times.
The term ‘closest neighbor' in Algorithm 1 refers to the voxel x∈ A

that shares the greatest surface area (i.e.most voxel faces)with a voxel
in node G(j⁎). If two or more voxels in A are equally closest neighbors,
the voxel that is closest in distance to the current center of mass of
G(j⁎) is chosen. Any further ties between voxels are broken randomly.

At any given iteration, J is a set containing the index of each node
that can be enlarged during a subsequent iteration. That is, any node
that does not appear in J cannot be enlarged, since it does not have
any neighbors in A.

Thewhile loop in Algorithm 1 is guaranteed to terminate as long as
A is contiguous. For the purposes of Algorithm 1, contiguity was
defined using the usual 26-voxel neighborhood.

Appendix 2: inter-subject variability

In Figs. 4 (σ vs. nodal scale) and5 (λ andγ vs. nodal scale), themeans
and standard deviations of eachmeasurewere averaged across the 3DTI
acquisitions (each acquisition corresponding to a different subject) and
separately across the 3 HARDI acquisitions, thereby yielding two data
points (blue and red) for each nodal scale. To investigate the inter-
subject variability of σ, λ and γ, Fig. 12 shows the equivalent of Figs. 4
and 5, but with a separate trace plotted for each of the 6 acquisitions.
That is, averaging was not performed over the three subjects.
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